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Abstract

We identified key residues from the structural alignment of families of protein domains from SCOP which
we represented in the form of sparse protein signatures. A signature-generating algorithm (SigGen) was
developed and used to automatically identify key residues based on several structural and sequence-based
criteria. The capacity of the signatures to detect related sequences from the SWISSPROT database was
assessed by receiver operator characteristic (ROC) analysis and jack-knife testing. Test signatures for
families from each of the main SCOP classes are described in relation to the quality of the structural
alignments, the SigGen parameters used, and their diagnostic performance. We show that automatically
generated signatures are potently diagnostic for their family (ROC50 scores typically >0.8), consistently
outperform random signatures, and can identify sequence relationships in the “twilight zone” of protein
sequence similarity (<40%). Signatures based on 15%–30% of alignment positions occurred most frequently
among the best-performing signatures. When alignment quality is poor, sparser signatures perform better,
whereas signatures generated from higher-quality alignments of fewer structures require more positions to
be diagnostic. Our validation of signatures from the Globin family shows that when sequences from the
structural alignment are removed and new signatures generated, the omitted sequences are still detected. The
positions highlighted by the signature often correspond (alignment specificity >0.7) to the key positions in
the original (non-jack-knifed) alignment. We discuss potential applications of sparse signatures in sequence
annotation and homology modeling.
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The limitations of using purely sequence-based methods to
identify protein evolutionary relationships are well docu-
mented (Brenner et al. 1998; Rost 1999; Spang and Vingron
2001). Although developments in this field have shown sig-
nificant improvement (Altschul et al. 1997; Karplus et al.
1998; Park et al. 1998), it is well known that the use of
structural information can probe more distant relationships

than sequence alone (Hargbo and Elofsson 1999; Ison et al.
2000; Blake and Cohen 2001; Jennings et al. 2001).

The relationship between the sequence of a protein and its
three-dimensional structure is not strictly defined. This is
particularly noticeable where highly dissimilar sequences
adopt similar structures. This has led researchers to inves-
tigate, both experimentally and computationally, the idea
that structural determinants are restricted to a limited num-
ber of “key residues positions” in the sequence (Friedberg
and Margalit 2002). Mutation experiments have shown that
many proteins retain their activity (Markiewicz et al. 1994;
Suckow et al. 1996) and stability (Milla et al. 1994) despite
the introduction of mutations at many positions in the se-
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quence. Bowie et al. (1990) showed that the mutations that
did have an effect on the structure or activity were located
in functional sites or the hydrophobic core. The identity of
these core residues did not appear to be crucial, and inter-
change between similar hydrophobic residues did not per-
turb the structure. The computational studies of Shakhnov-
ich et al. (1996), Mirny et al. (1998), and Mirny and Sha-
khnovich (2001) reached similar conclusions.

Recent improvements in structure alignment and com-
parison methods have focused attention more toward the
study of the “key” structural residues and the residue clus-
ters in which they are involved (Artymiuk et al. 1994; Dosz-
tanyi et al. 1997; Kannan and Vishveshwara 1999; Kley-
wegt 1999; Orengo 1999; Kannan et al. 2001; Reddy et al.
2001; Li et al. 2002). Collectively these studies show that
the folding of very different sequences into similar three-
dimensional structures is mediated by the interactions of a
very small number of key residues at specific positions in
the sequence. It is in this area of research that we developed
our SIGNATURE approach (Daniel et al. 1999; Ison et al.
2000).

Our approach identifies structurally important residues in
a protein family and incorporates them in a descriptor
known as a sparse protein signature (Daniel et al. 1999). A
signature is a sparse representation of a protein family (ac-
cording to the SCOP hierarchy), consisting of residue iden-
tities within key residue positions (signature positions) and
flexible gaps that represent the sequence positions between
successive key residue positions (Fig. 1). A signature is
suitable for scanning against a sequence database, from
which homologous sequences can be identified, using the
SIGSCAN program (which forms part of the EMBOSS
suite) (http://www.hgmp.mrc.ac.uk/EMBOSS).

SIGSCAN allows flexibility in the alignment of a signa-
ture to a sequence. For example, when matching signature
positions to residues any gap sizes are permitted, but gap
penalties are incurred when gaps are used that do not appear
in the signature. SIGSCAN scores residues using a residue
substitution matrix (see Table 5). Each signature-sequence
match is given a score of the best alignment of the signature
positions to the protein sequence. The highest-scoring
matches in a search of a sequence database will, ideally,
belong to the family from which the signature was derived.

The SIGNATURE approach rests on two premises:

1. Although the majority of residues in proteins are subject
to substitution, tight constraints are imposed on the evo-
lution of a few key residues responsible for determining
and maintaining the fold.

2. The identification of these key residues can yield signa-
tures which when scanned against a sequence database
can identify protein homologous relationships.

We have shown that very sparse signatures (i.e., those with
a few positions only) are in fact diagnostic of protein fami-
lies (Ison et al. 2000). This early approach was an essen-
tially manual method; however, its automation should make
it more widely useful and permit more rigorous validation.
Here we describe the automation of the approach and the
new SigGen program, which generates signatures automati-
cally by applying sequence- and structure-based scoring
schemes to “seed alignments” of protein families taken from
the SCOP database (Lo Conte et al. 2000).

Test signatures for families from each of the main SCOP
classes are discussed in relation to the quality of the seed
alignments, the SigGen scoring scheme used, their diagnos-
tic performance, and the quality of the resulting signature-
sequence alignments. We were interested to know whether
sparse signatures could incorporate sufficient information to
identify more distantly related sequences than those found
in a single SCOP family. To test this, signatures were gen-
erated for the “Globin-like” superfamily from SCOP. Such
superfamilies contain domains whose sequence identities
may be low, but whose structural and often functional fea-
tures suggest a common evolutionary origin.

Figure 1. The construction of a sparse protein signature is illustrated. A
shows three sequence segments; the residues in large text indicate the key
residues selected from that region. B illustrates the data contained in a
signature, i.e., the residue choices at each position and the gap choices
between successive signature positions.
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Preparation of seed alignments

Table 1 shows the protein families considered and their
position in the SCOP hierarchy. Representatives were se-
lected from each of the major SCOP classes. In order to
assess the dependence (if any) of signature performance on
the relatedness of the proteins in the seed alignment, two
“seed sets” of structures were created for each test family
such that within each set no pair of structures has greater
than a threshold sequence similarity. Thresholds of 90% and
50% were used to create the “DATA90” and “DATA50”
seed sets, respectively. The structure alignment program
STAMP (Russell and Barton 1992) was used to generate
structure-based sequence alignments from these sets (see
Materials and Methods).

Generating signatures for the Globin-like superfamily re-
quired a single set of superfamily members. The superfam-
ily contains three families: globin, phycocyanin, and trun-
cated hemoglobin. The DATA50 seed sets for each family
were combined and a seed alignment generated. STAMP,
however, rejected the truncated hemoglobin family because
the structures for this family did not achieve an alignment
score above the required threshold (according to the
STAMP scoring scheme) when aligned to the rest of the set.
Thus the superfamily seed alignment contained structures
from the phycocyanin and globin families only.

Signature generation

SigGen uses two sequence-based and two structure-based
scoring schemes with the option to combine more than one
scheme in the residue selection process. An alignment po-
sition is only scored (and therefore a candidate for inclusion
in the signature) if the residues from the different domains
are “structurally equivalent”: This is defined by the STAMP
algorithm (see Materials and Methods). Thus a signature
position corresponds to a set of structurally equivalent resi-
dues occupying the same (high-scoring) position in the
STAMP alignment.

The first sequence-based scheme (ResId) uses a residue
substitution matrix (BLOSUM62). The score for an align-
ment position is the average residue substitution score for
all possible pairs of substitutions at each structurally equiva-
lent position. The second scheme (ResVar) applies the resi-
due variability function of Mirny and Shakhnovich (2001)
to the residues at each alignment position. The structure-
based schemes do not consider residue identity at all. The
first of these (N-Con) determines the total number of con-
tacts for every residue. The score for an alignment position
in this case is the average number of contacts made by each
residue at that position. The score calculated in the C-Con
scheme is the degree to which these contacts are conserved
in the family. The scoring schemes are described in greater
detail in the Materials and Methods.

The amount of information a signature contains depends
on its sparsity. For example, a if a seed alignment contains
eight domains with an average sequence length of 100 resi-
dues, then a signature of 10% sparsity will contain key
residue and gap data from the 10 highest-scoring seed align-
ment positions. A signature of 20% sparsity will consider
the top 20 positions, and so on. SigGen was used to generate
signatures at sparsities of 2%, 5%, 10%, 15%, 20%, 25%,
and 30% and with the four different scoring schemes to
yield 28 signatures from the DATA90 data set and a further
28 signatures from the DATA50 data set for each of the test
families. Twenty-eight signatures were also generated from
the Globin-like superfamily seed alignment.

Evaluation of signature performance

Signatures were scanned against release 40 of the SWISS-
PROT database using the SIGSCAN program in EMBOSS.
We evaluated the diagnostic performance of signatures us-
ing receiver operator characteristics (ROC) analysis. This
has been used for many years in clinical studies to evaluate
the usefulness of diagnostic tests, for example, serum cho-
lesterol level as a diagnostic for heart disease (Gribskov and
Robinson 1996). A ROC curve plots sensitivity (“rate of

Table 1. SCOP families considered

Class Fold Superfamily Family
Gold

standard

All � DEATH domain DEATH domain DEATH domain 25
All � Globin-like Globin-like Globin 820
All � Lipocalin Lipocalin Fatty acid binding protein-like 89
All � Lipocalin Lipocalin Retinol binding protein-like 116
All � Viral coat and capsid proteins Viral coat and capsid proteins Plant virus proteins 21
�/� (mixed) TIM �/� barrel Triosephosphate isomerase (TIM) Triosephosphate isomerase (TIM) 109
�/� (mixed) TIM �/� barrel (Trans) glycosidases Type II chitinase 49
� + � (segregated) Lysozyme-like Lysozyme-like C-type lysozyme 89

Protein families were taken from the SCOP database. The Class, Fold, Superfamily, and Family classification of the families are given. The number of
sequences from SWISSPROT that were inferred to be related to each family is given under “Gold standard” (see Materials and Methods).
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true positives”) on the Y-axis against (1−specificity) (“rate
of true negatives”) on the X-axis, calculated for all rank
positions in a list of hits that is rank-ordered on the basis of
score (highest score first). The area under a ROC curve can
be calculated and is a measure of the probability of correct
classification. For example, in the case of signatures, an area
of 0.88 indicates that a sequence belonging to the same
family as that from which the signature was derived has a
probability of 0.88 of scoring higher than a sequence known
to be unrelated to the signature. In practice, ROC curves are
usually truncated to the first 50 or 100 false hits and the area
calculated to generate a ROC50 or ROC100 score. These
scores are quicker and more convenient to calculate, can be
expressed by fewer decimal places, and reflect the way in
which the biologist, who is not prepared to search through
large numbers of false hits, will use the method. We use the
ROC50 score here. We also quote signature sensitivity,
which is defined as the proportion of the total number of
known true hits that are detected before the 50th false hit. In
calculating the ROC50 score and sensitivity, we use a “gold
standard” of known protein family members as described in
Materials and Methods.

Validation of signatures

A good test of the diagnostic performance of signatures and
also the signature concept is to generate random signatures
from the seed alignments and compare their performance to
signatures generated by using a scoring scheme. SigGen
provides an option to randomly select residues from any-
where in the alignment; this option was used here. As a
further validation, jack-knife (“miss one out”) testing was
performed for the Globin family by removing one structure
at a time from the seed set, rebuilding the alignment, and
generating a new jack-knifed signature. Each domain in the
Globin family DATA50 seed set was omitted in turn to
generate a set of jack-knifed signatures at each of the seven
sparsities used previously (2%, 5%, 10%, 15%, 20%, 25%,
and 30%). These were scanned against the SWISSPROT
database, and the list of hits returned by the search was
checked for the presence of the omitted seed domain. A seed
domain was defined as “detected” if it scores higher than the
50th false hit. The diagnostic performance of the jack-
knifed signatures was assessed by ROC analysis as before.
We also assessed the impact of jack-knifing on the detection
of distantly related family members, with a view to under-
standing whether domains in the seed set exert equal influ-
ence on the signature. The quality of the signature-sequence
alignments that result from searching a signature against
SWISSPROT were investigated by calculating alignment
specificity scores (see Materials and Methods) for the jack-
knifed and original (all structures) signatures. Our aim was
to determine whether the residues highlighted in the align-
ment of a signature to a SWISSPROT sequence were indeed

structurally equivalent to those in the original seed align-
ment from which the signature was generated.

Results

Signature performance

Table 2 shows the sparsity and ROC50 score of the best-
performing signature derived from the DATA90 seed set,
for each SigGen scoring scheme and test family. Here we
describe each test family in turn and then the Globin family
in more detail. The Chitinase and lysozyme family signa-
tures from each scoring scheme all achieved perfect or near-
perfect ROC50 scores (1.0). This is not particularly surpris-
ing, because the sequences in the seed alignments are
closely related. The DEATH domain family signature pro-
duced consistently poor ROC50 scores, owing to the poor
quality of the seed alignment. In fact, the most recent re-
lease of the SCOP database now subdivides the original
DEATH domain family into three separate families,
Caspase Recruitment Domain (CARD), DEATH Domain
(DD), and DEATH Effector Domain (DED). The FABP
family has a good seed alignment, and the signatures pro-
duce consistently high ROC50 scores for each scoring
scheme. The Globin, Plant Virus, and RBP families are
unusual cases in that the ROC50 scores for the different
schemes are identical. This is because the seed alignments
contain a limited number of structurally equivalent residues.
Therefore, less sparse signatures than those in Table 2 could
not be generated, because there were insufficient structur-
ally equivalent residues. Therefore signatures generated us-
ing the different scoring schemes will contain the same key
residues and will achieve the same ROC50 scores. The Plant
Virus family signatures performed poorly. These are Jelly-
Roll proteins with some variations in structure between
family members. Some proteins have an additional 1–2
�-strands, and this variation compromises the alignment

Table 2. Best-performing signatures from each family

Family
ResId

BLOS 62 C-Con N-Con ResVar
Average

ROC50 score

Chitinase 1.00 (20) 1.00 (20) 1.00 (20) 1.00 (15) 1.00
DEATH 0.50 (15) 0.37 (30) 0.45 (30) 0.56 (20) 0.47
Globins 0.84 (15) 0.84 (15) 0.84 (15) 0.84 (15) 0.84
Plant virus 0.45 (15) 0.45 (15) 0.45 (15) 0.45 (15) 0.45
FABP 0.90 (15) 0.89 (25) 0.89 (30) 0.90 (30) 0.90
Lysozyme 0.97 (5) 0.97 (15) 0.97 (15) 0.97 (5) 0.97
TIM 0.77 (15) 0.76 (15) 0.77 (30) 0.77 (20) 0.77
RBP 0.75 (20) 0.75 (20) 0.75 (20) 0.75 (20) 0.75

The best-performing signatures (i.e., those with highest ROC50 scores)
derived from the DATA90 seed sets. The columns represent the four dif-
ferent scoring schemes, and the numbers in the columns are the ROC50
scores, with the signature sparsity in parentheses. The different scoring
schemes are described in the Materials and Methods section.
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and therefore the signature. The RBP and globin family seed
alignments were also poor; however, this was not due to
structural differences, but to the fact that the DATA90 seed
set contained large numbers of structures. Nonetheless, both
signatures were still able to achieve significant ROC50
scores (>0.75).

Figure 2 displays graphically the distribution of signature
sparsity amongst the best signatures (Table 2). Signatures of
sparsity of 15% and 20% occurred most frequently among
the best-performing signatures; however, no single SigGen
scoring scheme consistently outperforms the others. Signa-
tures of sparsity of 40%, 50%, and 60% were also tested
(data not shown) and found to be progressively less dis-
criminating. These signatures include positions which are
not structurally equivalent, or evolutionarily conserved and
which are unlikely to be key to the family. Their inclusion
therefore incorporates nonspecific information (“noise”),
with a resulting decrease in diagnostic performance.

Globin family signatures (DATA90 set)

Figure 3 shows ROC50 values plotted against signature
sparsity for the N-Con, ResVar, and random globin signa-
tures. The 15% N-Con signature is discriminating with a
ROC50 score of 0.84 with 88% of the known true relatives
detected before the 50th false hit. Initially almost all hits
detected are TRUE, followed by a sudden increase in
FALSE and UNKNOWN hits around hit number 700. Simi-
lar results were obtained for the C-Con and ResId globin
signatures (data not shown). The randomly generated sig-
natures perform extremely poorly; only two signatures (5%
and 15%) detected any true hits at all, and less than 1% of
the true hits were detected by both of these.

The globin family DATA90 seed set included 44 struc-
tures with an average pairwise sequence similarity of 55%.
However, owing to the large number of structures (as was
the case for the RBP family), the alignment contained few

regions of structural equivalence, resulting in signatures
with a maximum sparsity of 15%.

We generated a matrix of sequence similarity data from
an all-versus-all comparison of the TRUE hits retrieved by
the 15% N-Con signature to the seed sequences. The TRUE
hits have a sequence similarity to the 44 structures in the
alignment that ranges from 30% to 99% with an average
pairwise similarity of 55%. Thus, from an alignment of
many structures and with extensive regions of poor residue
equivalence, a sparse signature can be generated automati-
cally that provides good coverage of the globin family, in-
cluding the more diverse relatives.

Globin family signatures (DATA50 set)

The globin DATA50 seed set contained four structures with
an average pairwise sequence similarity of 42%. The align-
ment quality is dependent to an extent on the number of
structures present, and in this case the fewer structures
yielded a better alignment than the DATA90 set. All of the
N-Con and ResVar globin signatures above 15% sparsity
perform well, with the ROC50 score peaking at 0.91 and
0.92, respectively, for the 30% signatures, indicating excel-
lent discrimination of the globin family. Both the N-Con
and ResVar 25% and 30% sparse signatures have a sensi-
tivity of over 90%.

The random signature shows a peak ROC50 score of 0.5
(see Fig. 3) which, although higher than the random signa-
tures for the DATA90 set, is still much worse than the
signatures generated by using the scoring schemes. It ap-
pears that when alignment quality is high the choice of
residues is still important, but is not so decisive as when
alignment quality is poor (DATA90 set), where the in-
formed (nonrandom) selection of key residues is essential to

Figure 2. The graph displays the distribution of signature sparsity for the
best-performing signatures derived from the DATA90 set for each of the
SigGen scoring schemes and test families (see Table 3). A peak is visible
at 15%–20% sparsity.

Figure 3. The graph shows the ROC50 scores plotted against signature
sparsity for the N-Con, ResVar, and random signatures for the Globin
family derived from the DATA90 and DATA50 seed sets. The difference
in performance between random and nonrandomly generated signatures is
clear. Signature sparsity refers to the number of signature positions con-
tained in each signature and is a percentage of the average sequence length
for all domains in the seed alignment.

Automatic generation of sparse protein signatures
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producing a discriminating signature. We conclude there-
fore that the quantity of information contained in the
DATA90 sets was unnecessary. Not only were superior
alignments obtained with the DATA50 seed sets, but in the
case of the globin family, the performance of the signatures
increases. It is noticeable however that the 10% and 15%
N-Con DATA90 signatures were much more discriminating
than the equivalent DATA50 signatures. More positions
must be sampled from the alignment containing fewer do-
mains to achieve a similar level of performance.

The sequence similarity of the TRUE globin hits to the
seed proteins varies from 28% to 98%. Signatures encoding
a subset of residues generated from a set of four structures
(42% average pairwise similarity) contain sufficient infor-
mation to detect almost 800 globin sequences (including
many divergent examples) and produce high (>0.9) ROC50
scores. This supports the idea that a sparse signature of key
residues for a protein family can be generated automatically.

Jack-knife testing for Globin family

All of the N-Con and ResVar globin signatures of 5% spar-
sity and above generated from the non-jack-knifed
DATA50 seed alignment detected all four of the seed pro-
teins from the SWISSPROT database before the 50th false
hit. This is hardly surprising, but is significant considering
that random signatures failed to detect the jack-knifed seeds
in more than 50% of cases. The Globin DATA50 seed align-
ment contains four domains, producing four different jack-
knifed seed alignments. Signatures of sparsity >10% gen-
erated from these using the four SigGen scoring schemes
always identify the omitted seed protein before the 50th
false hit, but some of the more sparse signatures (2%, 5%,
10%) failed to do so. None of the random jack-knifed sig-
natures detected any omitted seed proteins at all.

Table 3 shows the ROC50 scores for the best performing
signatures generated using the N-Con, ResVar, and Random
scoring schemes from the four jack-knifed and one non-
jack-knifed alignments; similar results were obtained for the

ResId and C-Con scoring schemes (data not shown). The
N-Con and ResVar SigGen scoring schemes appeared to
perform similarly in terms of detecting jack-knifed seeds
and consistently outperform the random signatures. It is
clear that omission of the domains d1ash_, d1d8ua_, or
d1hlb_ does not have a significantly detrimental effect on
signature performance. Removal of domain d1dxtb_, how-
ever, does. The sensitivity dropped from 92% to 75%, and
there was an increase in the number and rank of the false
hits with the ROC50 dropping from ∼0.9 to 0.5. This high-
lights how critical the information obtained from the
d1dxtb_ domain is in producing a discriminating signature.
This result is explained by considering the sequence simi-
larity between the TRUE hits detected and the seed proteins.

The average pairwise sequence similarity between the
domains d1ash_, d1d8ua_ and d1hlb_, and the TRUE hits
detected ranges between 40% and 45%, with individual
pairwise values as low as 28%. The average pairwise se-
quence similarity between domain d1dxtb_ and the TRUE
hits detected is 66.3% with the lowest being 37%. Thus
d1dxtb_ is a better representative of the family as a whole
than the other three structures and thus has a powerful effect
on diagnostic performance. This also supports the second
premise on which the approach is based, that is, that key
residue positions can define residue and gap information
that when incorporated into a signature are diagnostic for
SCOP families. Clearly, the choice of domains used in the
structural alignment can have a significant impact on the
signatures performance, and the information from a single
domain can be critical.

In all jack-knifed data sets (including the poor-perform-
ing d1dxtb_ set), there are examples of the detection of
divergent relationships (i.e., TRUE hits with average pair-
wise sequence similarities to the seed proteins of <40%).
For example in the data set with the domain d1hlb_ re-
moved, the protein with primary accession number P02224
(a Globin precursor from Chironomas thummi thummi, the
midge) is detected and has pairwise similarity values to the
domains d1d8ua_, d1ash_, and d1dxtb_ of 39.10%, 38.40%,
and 38.10%, respectively.

Evaluation of signature–sequence alignments

Table 4 shows the sparsity and alignment specificity scores
for the jack-knifed N-Con and ResVar signatures. C-Con
and ResId signatures produced similar results (data not
shown). Alignment specificity scores represent the accuracy
of the signature-to-sequence alignments (see Materials and
Methods). Alignment specificity scores of at least 0.74 were
obtained for signatures generated from each of the jack-
knifed seed alignments using the N-Con and ResVar scoring
schemes, with many examples obtaining perfect (1.0) or
near-perfect scores. Some of the lower-sparsity signatures
did not perform as well, though, with scores of <0.50. The

Table 3. Optimum ROC50 scores for jack-knifed signatures

SigGen
scoring
scheme

SCOP domain identifier
of jack-knifed seed protein

Non jack-knifed
resultsd1ash__ d1d8ua_ d1dxtb_ d1hlb__

N-Con 0.91 0.91 0.50 0.90 0.92
ResVar 0.90 0.88 0.52 0.86 0.92
Random 0.02 0.28 0.01 0.02 0.50

The best ROC50 scores for N-Con, ResVar and random signatures of
various sparsities derived from structural alignments, each of which is
missing a different structure. The structure that was omitted is given at the
top of the column. The far right column shows the best ROC score for
signatures derived from the complete alignment.

Blades et al.
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data did not suggest that a particular signature sparsity is
optimum for achieving the best alignment between signa-
ture and jack-knifed seed proteins; however, sparsities in the
range 20%–25% most commonly produce the highest speci-
ficity scores. The average alignment specificity score is 0.88
for the N-Con and ResVar signatures, that is, 88% of the
key residues in the signatures are aligned to their correct
(and structurally equivalent) residues in the jack-knifed seed
sequences. Thus, the information within a signature is suf-
ficient to identify family members (e.g., jack-knifed se-
quences) and also to consistently identify structurally
equivalent key residues within the sequences of the jack-
knifed proteins.

Globin-like superfamily signatures

ROC50 scores for Globin-like superfamily signatures gen-
erated using the each of the four SigGen scoring schemes
(Fig. 4) range from 0.64 to 0.73; i.e., the probability of a hit
known to be a member of the globin or phycocyanin family
and found before the 50th false hit scoring higher than a hit
known not to be related ranges between 0.64 and 0.73. This

shows that information from two SCOP families can be
combined into a single superfamily signature. However, sig-
natures for the globin family achieved ROC50 scores in
excess of 0.9. Inspection of the TRUE hits identified by the
superfamily signatures (data not shown) showed that they
were indeed detecting members from both families. There-
fore the inclusion of the phycocyanin domain has two ef-
fects on the signature:

1. It has enabled the detection of phycocyanin family mem-
bers. This confirms the findings of the jack-knifing ex-
periments; that a single domain can impact significantly
on signature performance.

2. The lower ROC50 scores are due to the increased vari-
ability added to the signature by the phycocyanin do-
main, which resulted in the detection of more false hits at
ranks higher than with the globin family signature.

Nonetheless, members from both families are detected with
significant ROC scores, whereas randomly generated signa-
tures all achieve ROC50 scores of 0.0, i.e., they failed to
detect any true hits from either the globin or phycocyanin
families. In contrast, the globin family random signatures
achieved ROC50 scores of ∼0.5. We conclude that signa-
tures derived from the Globin-like superfamily do indeed
capture key features of the superfamily that have significant
discriminating power. However, the performance of the sig-
nature is even more sensitive to the selection of key residues
than was observed for the signatures for the single families.

Discussion

Diagnostic SCOP family signatures

We have shown that sparse signatures generated automati-
cally for SCOP families are indeed diagnostic for their par-

Figure 4. The graph shows the ROC50 scores plotted against signature
sparsity for the N-Con, ResVar, ResId, C-Con, and random Globin-like
superfamily signatures. The difference in performance between random
and nonrandomly generated signatures is again obvious.

Table 4. Alignment specificity scores for jack-knifed signatures

Domain
jack-knifed
from alignment

SigGen scoring scheme used to generate signatures

N-Con ResVar

Sparsity Specificity Sparsity Specificity

d1hlb__ 5 — 5 —
10 0.81 10 —
15 0.83 15 0.95
20 0.87 20 0.97
25 0.85 25 0.97
30 1.0 30 0.93

d1dxtb_ 5 — 5 —
10 — 10 —
15 — 15 —
20 — 20 —
25 — 25 —
30 — 30 0.81

d1d8ua_ 5 — 5 —
10 — 10 —
15 0.43 15 —
20 0.74 20 0.71
25 0.74 25 0.74
30 0.47 30 0.57

d1dash__ 5 — 5 —
10 — 10 —
15 0.87 15 —
20 0.89 20 0.94
25 0.91 25 0.96
30 0.91 30 0.94

For each jack-knifed data set, the sparsity, scoring scheme, and alignment
specificity score for the signatures that were able to detect the jack-knifed
seed proteins are shown. Dashes indicate where signatures failed to detect
the jack-knifed protein at a rank above the 50th false hit.
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ticular family. Signatures from a range of families consis-
tently produce ROC50 scores in excess of 0.8. In addition,
signatures consistently detect more than 90% of the true
known relatives identified by PSI-BLAST. This is signifi-
cant considering that PSI-BLAST uses a position-specific
score matrix (PSSM), incorporating all the residue informa-
tion from the hits identified from a standard BLAST search,
then uses the PSSM to iteratively search the database and
rebuild the PSSM incorporating any new hits. Given that
signatures are not iteratively refined and use the information
from just a few structures to identify a subset (typically
15%–30%) of the total residues, which identify, in some
cases, many hundreds of family members, the method
shows considerable potential.

Signatures at the SCOP-family level were able to detect
family members with less than 40% average pairwise se-
quence similarity to the seed proteins; this equates to an
average sequence identity of 20%–30%. Therefore, signa-
tures are able to probe relationships within the so-called
“twilight zone” of sequence similarity. The Globin-like su-
perfamily signature also highlighted the ability of a single
signature to include information from two families and still
maintain discriminatory power with respect to both fami-
lies, while outperforming random signatures. The use of
structural information from two different families intro-
duces added flexibility into the signature which is needed to
identify members of both families. However, this flexibility
was the cause of reduced ROC50 scores compared to single
family signatures. No individual SigGen scoring scheme
consistently performed best, but random signatures consis-
tently performed poorly. We conclude that discriminating
signatures require key residues from structurally equivalent
positions, and that these key residues can be automatically
identified.

Potential applications of the SIGNATURE approach

Our approach has potential use in three areas of protein
sequence/structure analysis. Firstly, it has been shown that
relationships in the 40% sequence similarity range are iden-
tifiable. Therefore, the approach has potential as an anno-
tation tool. To this end we have evaluated the usefulness of
a database of signatures in providing annotation to protein
sequences; initial results showed considerable potential and
this will be described in a future work. Second is the ob-
servation that the signature-sequence alignments can iden-
tify true structural equivalences. In homology modeling, a
novel sequence is aligned to sequences of known structure,
and the structural features are transferred to the novel se-
quence. Once suitable targets are identified, the next crucial
step is obtaining a high-quality alignment. Both steps can be
difficult, especially for divergent proteins, yet the quality of
the final model depends on them. Signatures might offer
advantages over all-residue alignments because they would

emphasize the biologically significant positions in the se-
lection of the target and generation of the alignment. Fi-
nally, the residues identified provide targets for experimen-
tal investigations into the sequence–structure and structure–
function relationships, and the possible role of the key
residues in protein folding.

SCOP superfamily signatures

We are interested to know the generality of whether a single
sparse signature can capture the features of an entire super-
family. More than 10 different superfamilies were investi-
gated, but in none of the examples could a suitable seed
alignment be generated automatically. There were too few
structurally equivalent positions, and inspection of the su-
perimpositions using molecular graphics suggested that
some equivalences were incorrect. The ability to succeed
only with the Globin-like superfamily reflects the broader
and extremely difficult problem of making confident auto-
mated assignments of structurally equivalent residues for
groups of structurally divergent proteins. Alignment meth-
ods are progressing, however, and we are exploring differ-
ent alignment strategies to investigate superfamily signa-
tures further. The use of more divergent domains in the seed
alignments might also help reveal an optimum SigGen scor-
ing scheme, because there would be less sequence similarity
to “drown out” the genuinely key residues.

Development of the SIGNATURE Approach

The SIGNATURE approach is generic in the sense that
signatures can in principle be generated for any family of
proteins for which two or more known structures are avail-
able. We used SCOP families because they capture a high
resolution of structural similarity and suggest that for many
applications, a superfamily might best be represented by a
collection of signatures representing the individual sub-
groups. For example, an unannotated sequence could be
screened against a library of signatures and assigned to a
broader superfamily by reference to the scores for the
matches of the individual signatures comprising the super-
family. The full potential of the approach has yet to be
realized, and there are several possible routes to improving
the method, including the use of secondary structure infor-
mation and iterative signature refinement, which will be
addressed in future work.

Materials and methods

Preparation of seed alignments

Figure 5 summarizes the steps involved in generating the seed
alignments. The structural alignment program STAMP was used to
generate two seed alignments for each test family, one each from
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the DATA90 and DATA50 seed sets (see introduction). Only crys-
tal structures of better than 2.8 Å resolution were used. STAMP
uses one “scan structure” upon which all the others in the set are
superimposed. The selection of the scan structure is fundamental to
the quality of the resulting alignment, as shown by Gerstein and
Levitt (1998), who concluded that the optimum alignment is ob-
tained when the scan structure is the closest on average to all the
other structures in the group. Accordingly we performed all pos-
sible pairwise structural alignments for a seed set and calculated
the average RMSD for each structure. The scan structure has the
lowest average RMSD. In the preparation of the alignment for the
jack-knifed signatures (see “Validation of signatures” above), we
determined a new median structure for each jack-knifed seed set.

Signature generation

SigGen selects signature positions from structurally equivalent po-
sitions in a seed alignment. Structural equivalence is indicated by
a value of 1 for an alignment position in the POST_SIM output of
STAMP, meaning that every pair of structures in the alignment had
a Pij� value for that position which is greater than a predefined

threshold (6.0). The Pij� value is an adaptation of the probability
function of Rossmann and Argos (1976) which expresses the prob-
ability of residue structural equivalence (Pij).

SigGen requires a file of residue–residue contact data (Fig. 5)
derived from the three-dimensional coordinates of the seed do-
mains. We generated each contact file using the EMBOSS appli-
cation “contacts.” Contact between two residues is defined as
when the van der Waals surface of any atom of the first residue
comes within the threshold contact distance of the van der Waals
surface of any atom of the second residue. The threshold contact
distance is 1 Å, and the following van der Waals radii are used: C,
1.8 Å; O, 1.4 Å; N, 1.7 Å; S, 2.0 Å; H, 1.0 Å.

SigGen scoring schemes: Residue Identity (ResId)

The ResId score for an alignment position is simply the average of
all permutations of residue pair substitution scores for that posi-
tion. Scores are taken from a residue substitution matrix, e.g.,
BLOSUM62 (Henikoff and Henikoff 1992). A ResId score is cal-
culated for every structurally equivalent position in the seed align-
ment, and the average substitution scores are normalized using
standard Min-Max normalization methods.

SigGen scoring schemes: Residue Variability (ResVar)

This scoring scheme implements the residue variability function of
Mirny and Shakhnovich (2001):

s�1� = − �
i=1

6

pi�1� log pi�1� (1)

Where s(l) is the residue variability at position l, and pi(l) is the
frequency of residues from class i at position l. Six classes of
residue are defined which reflect their physicochemical properties
and natural pattern of substitution:

• Aliphatic A V L I M C
• Aromatic F W Y
• Polar S T N Q
• Basic K R H
• Acidic D E
• Special G P

The special class represents the special conformational properties
of glycine and proline. Because of this classification, mutations
within a class are ignored—for example, L→V—whereas muta-
tions that change the residue class are taken into account. The
ResVar score for an alignment position is s(l) in equation 1. This
is calculated for each structurally equivalent position and normal-
ized as before.

SigGen scoring Schemes: Number of Contacts (N-Con)

The N-Con score is based purely on structural information: The
identity and property of the residues is not considered. The N-Con
score [N(l) in equation 2, below] of an alignment position reflects
the number of residue–residue contacts (see above) it forms.

N�1� =
�
i=1

n

NCi�1�

n
(2)

Figure 5. Summary of the approach for generating seed alignments, sig-
nature generation, and scanning. Signatures are produced from a structure-
based sequence alignment (seed alignment) generated using STAMP. Sig-
Gen applies sequence-based and structure-based scoring schemes to the
alignment to generate the signature; the latter requires a file of contact data
describing the residue-residue contacts in the protein structure. A signature
is scanned against a sequence database by using SIGSCAN and generates
a hits file and alignment file for sequences returned by the search.
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Where N(l) is the average number of residue–residue contacts that
the residues at position l of the seed alignment make within their
respective structures. NCi is the number of contacts that the residue
(from sequence i) is involved in, and n is the number of proteins
in the seed alignment. The N-Con score is calculated and normal-
ized as before.

SigGen scoring schemes: Conservation of
Contacts (C-Con)

This scoring scheme considers the number of contacts each residue
at an alignment position makes, and also which residues are con-
tacted and their position in the alignment. The score represents
how conserved the contacts are. Each residue in an alignment
position has associated with it a list of positions with which it
makes contact. For example, if all the residues at position 25 of the
seed alignment made contact with the residues at position 79 of the
alignment, a conserved contact would be defined and a maximum
score allocated to the residues at position 25. We repeated this
procedure for all the contacts made by the residues at position 25,
and an average conservation of contact score was calculated. This
procedure was then repeated for every aligned position and the
values normalized as before.

Key residue selection for final signature

Consider the situation where a single scoring scheme has been
applied to a seed alignment containing six domains with an aver-
age sequence length of 100 residues. Each alignment position has
a normalized score: 1.0 indicates the position achieved a maximum
score, whereas 0.0 indicates a minimal score. The normalized
scores for all structurally equivalent positions are sorted into a list
in descending order. If for example a 15% sparsity signature is
generated, this requires a total of 15 key residue positions to be
identified. The top 15 highest normalization scores from the list are
then selected. SigGen identifies the corresponding alignment po-
sition in the seed alignment and extracts the residue and gap data
that will make up each key residue position of the signature. As
there are six domains in the alignment in this example, each key
residue position will contain a maximum of six different residue
identities and six different gap values. In the case where more than
one scoring scheme is to be applied in generating the signature, the
normalized values from each scheme are pooled for each align-
ment position, and the key residue selection process then proceeds
as described above.

The scoring schemes and the residue selection process described
above are encapsulated in the SigGen application. SigGen has the
same style command-line interface and is used in the same way as
all other EMBOSS applications (see http://www.hgmp.mrc.ac.uk/
Software/EMBOSS/Apps/index.html for software documentation).

Signature searches

The method used for searching a sequence database with a signa-
ture is encapsulated in the EMBOSS application SIGSCAN, which
implements the algorithm described in our earlier paper (Daniel et
al. 1999). Previous testing of SIGSCAN (data not shown) identi-
fied several reliable parameters (Table 5) that were used for all
searches. The output from SIGSCAN is a “hits file” and an “align-
ment file.” The hits file is a list of top-scoring hits rank-ordered on
the basis of score (highest-scoring hit first). The following data are
given for each hit: the SWISSPROT identifier, score, rank posi-

tion, start and end points of the region in the sequence to which the
signature was aligned, and the classification of the hit. Classifica-
tion is one of “TRUE,” “FALSE,” “CROSS,” or “UNKNOWN”
and is assigned by reference to a “gold standard” of known family
members (described below). The alignment file contains the sig-
nature-sequence alignments. These show which residues in the
sequences were assigned as being equivalent to the key residues
contained in the signature.

ROC analysis

The gold standard is a file of sequences from SWISSPROT that are
uniquely related to a single SCOP family, plus sequences of am-
biguous family assignment which are assigned to a SCOP super-
family or fold instead. This “validation file” was generated in a
two-step process by using the SEQSEARCH and SEQSORT ap-
plications in EMBOSS, which were developed for this purpose and
will be described in a publication in preparation. In brief:

1. PSIBLAST was used to search SWISSPROT with the DATA90
seed alignment for each SCOP family. The following PSI-
BLAST parameters were used: E-value � 0.0001, itera-
tions � 20. An application wrapper (SEQSEARCH) to PSI-
BLAST was developed for this purpose.

2. The results of these searches were processed to identify both
unique and overlapping hits and collated into the validation file
by using SEQSORT. This file allows a classification of TRUE,
CROSS, FALSE, or UNKNOWN to be assigned to each hit
retrieved by a signature as follows:

• A TRUE hit is one from the same family as that from which the
signature was generated.

• CROSS hits belong to a different family to that of the signature,
but both belong to the same superfamily.

• FALSE hits belong to families of a SCOP fold different from
that of the signature.

• UNKNOWN hits are any hits that cannot be assigned as TRUE,
CROSS, or FALSE.

We generate a ROC value by calculating the area under a ROC
curve truncated to the first 50 false hits:

Area =
1

nT
��

i�1

n

Ti (3)

Where n is the number of false hits (i.e., 50), T is the total number
of known family members taken from the validation file, and Ti is
the number of TRUE hits detected above the ith FALSE hit. Thus
to calculate ROC50, Ti is summed from i � 1 to i � 50.

Table 5. SIGSCAN parameters used for signature searches

Window
size

Gap
extension
penalty

Gap
opening
penalty

Hit overlap
threshold

Substitution
matrix used

Value 10 0.5 10 30 BLOSUM62

Reliable parameters identified from earlier testing of SIGSCAN were used
for all the SIGSCAN searches. The parameters are explained in detail at
http://www.hgmp.mrc.ac.uk/EMBOSS.
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Alignment specificity scores

Consider a signature containing 10 key residue positions. When
that signature is scanned against a sequence from SWISSPROT, an
alignment is produced in which each of the 10 key residue posi-
tions is aligned to a single residue in the SWISSPROT sequence.
An alignment specificity score of 1.0 means that each of the 10
residues identified in the sequence are structurally equivalent to
the position in the seed set alignment from which the matching key
residue position was derived. An alignment specificity score of
0.40 means that four out of the 10 residues in the sequence are
structurally equivalent to the key residue positions in the original
seed set alignment. The alignment specificity for each alignment of
a jack-knifed signature to the sequence that was jack-knifed out
was calculated as follows:

Alignment specificity =

No. of correctly aligned residues
in jack-knifed sequence

Total no. of key residue positions
in the signature

(4)

A correctly aligned residue (X) is one that is structurally equiva-
lent to the key residue position (Y) in question; if the jack-knifed
domain was put back into the seed alignment and the signature
regenerated, then residue X would form part of key residue posi-
tion Y.
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